Object-Focused Advice in Reinforcement Learning
نویسندگان
چکیده
In order for robots and intelligent agents to interact with and learn from people with no machine-learning expertise, robots should be able to learn from natural human instruction. Many human explanations consist of simple sentences without state information, yet most machine learning techniques that incorporate human guidance cannot use nonspecific explanations. This work aims to learn policies from a few sentences that aren’t state specific. The proposed Object-focused advice links an object to an action, and allows a person to generalize over an object’s state space. To evaluate this technique, agents were trained using Objectfocused advice collected from participants in an experiment in the Mario Bros. domain. The results show that Objectfocused advice performs better than when no advice is given, the agent can learn where to apply the advice in the state space, and the agent can recover from adversarial advice. Also, including warnings of what not do to in addition to advice of what actions to take improves performance.
منابع مشابه
Reinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملOn Learning by Exchanging Advice
One of the main questions concerning learning in Multi-Agent Systems is: ”(How) can agents benefit from mutual interaction during the learning process?”. This paper describes the study of an interactive advice-exchange mechanism as a possible way to improve agents’ learning performance. The advice-exchange technique, discussed here, uses supervised learning (backpropagation), where reinforcemen...
متن کاملGiving Advice about Preferred Actions to Reinforcement Learners Via Knowledge-Based Kernel Regression
We present a novel formulation for providing advice to a reinforcement learner that employs supportvector regression as its function approximator. Our new method extends a recent advice-giving technique, called Knowledge-Based Kernel Regression (KBKR), that accepts advice concerning a single action of a reinforcement learner. In KBKR, users can say that in some set of states, an action’s value ...
متن کاملTheoretically-Grounded Policy Advice from Multiple Teachers in Reinforcement Learning Settings with Applications to Negative Transfer
Policy advice is a transfer learning method where a student agent is able to learn faster via advice from a teacher. However, both this and other reinforcement learning transfer methods have little theoretical analysis. This paper formally defines a setting where multiple teacher agents can provide advice to a student and introduces an algorithm to leverage both autonomous exploration and teach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016